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Abstract-11 is shown how the widely used but purely qualitative theory of resonance in organic 
chemistry can be extended to a semiquantitative form. The extension is accomplished for ground 
states by relating n electron energies to Pauling bond orders, which are derivable by inspection from 
Kekulbtype nzsonance structures. For excited states ionic structures must also be considered. The 
model is applied mainly to hydrocarbon systems in calculations of resonance effects in electrophilic 
substitution, Dick-Alder reactions, radical stability, ionization potentials. and ekctronic spectra. 
Results are expressible in terms of a singk parameter which plays a role essentially equivalent to that 
of p in simpk molecular orbital theory. In a series of molecules the semiquantitative ordering of 
activation energies for attack at various sites, and the variations of radical stability, ionization 
potential, and spectroscop ic red shifts are found to be in substantial agreement with results of molec- 
ular orbital calculations. For oxygen acids the approach provides a rough rationalization of Pauling’s 
empirical rule for acid strength. 

Advantages and weaknesses of the Pauling order scheme are discussed. The principal virtue of the 
scheme is its extreme simplicity. It can be handled by anyone who can write resonance forms. For 
this reason there is some hope that it may be developed into a useful tool, even for chemists unschooled 
in mathematical arts and uninitiated in orbital theory. 

THE theory of resonance in organic chemistry has enjoyed a great popularity for many 
years. Its utility has been that chemists, however disinclined in mathematical arts 
they might be individually, could apply it to a wide variety of systems and get qual- 
itative answers having a certain quantum mechanical basis. Irrespective of the 
absolute validity of interpretations derived with its aid, the theory has real merit. 
It provides a convenient correlation framework onto which an enormous array of 
empirical observations can be affixed systematically. In recent years the molecular 
orbital theory has played an increasing role in organic chemistry. Its strongest 
advantage over elementary resonance theory is that it yields semiquantitative rather 
than purely qualitative results. Nevertheless, the mathematical complexities of the 
molecular orbital theory act as a formidable barrier to its widespread use by prac- 
ticing chemists. For this reason the discovery of a scheme for putting the conventional 
theory of resonance on a semiquantitative basis, and one which can be easily handled 
by anyone who can write resonance structures, may be of some practical interest. 

A rationalization of the numerical resonance theory which we shall use in the 
following for systems with paired electrons was recently described in another paper,’ 
where it was applied to resonance energies of polynuclear aromatic molecules. The 
purpose of the present paper is neither to defend the quantitative validity of the new 

+ Contribution No. 1357. Work was performed in the Ames Laboratory of the U.S. Atomic 
Energy Commission. 

’ L. S. Bartell, J. Whys. Gem. 67, 1865 (1963). 
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approach nor to use it in entirely new applications. It is simply to illustrate to 
chemists who might be interested in experimenting with it, the range of applicability 
in several representative chemical systems. These systems include not only ground 
states of stable molecules and transition states, but also excited electronic states and 
ions, 

MODEL FOR SINGLET GROUND STATES 

It was shown (Ref. 1) how the assumption that bond energies depend smoothly 
on A electron bond order leads to a treatment of resonance energies of aromatic 
molecules. The form adopted for the dependency was a truncated series expansion 

4, = c0 + cflff + ctpita (1) 

where E,, represents bond energy, pi, represents bond order, and the c, are constants 
characteristic of the bond type. The whole key to a quantitative treatment is the 
deduction of the pu. These quantities, in turn, depend upon a scheme for assessing 
the relative weights to be assigned to the various resonance forms which can be 
written. If proper weights were known, estimates could presumably be made not 
only of energies, but also of such quantities as bond lengths, dipole moments, etc. 
The derivation of the weights from first principles would be a valence bond problem 
more complex than the MO problem we are seeking to circumvent. A simple 
alternative which affords a satisfactory approximation for many purposes is the use 
of Pauling bond orders .* These bond orders are based on a weighting in which all 
resonance structures which are nominally equivalent energetically are given equal 
weight. All structures which are associated with higher energy by virtue of formal 
bonds, charge separation, etc., are rejected. Several author9 have shown that 
Pauling bond orders correlate experimental bond lengths at least as satisfactorily 
as the most elaborate alternative current theories, and Pauling orders were found, 
in Ref. 1, to work satisfactorily in calculations of aromatic resonance energies. 
Accordingly, we shall concentrate on their use in the remainder of this paper. 

The sum over all bonds of the E,, of Eq. (1) gives the total bond energy. Reso- 
nance energies (RE) are found by taking the difference between the total bond energy 
for a molecule and the bond energy calculated for a single reference structure. For 
ground states in which all electrons are paired it is easily shown that the terms 
involving co and c1 cancel, giving the simple result* 

where Nd is the number of double bonds in any individual resonance structure. 
Consequently, the RE can be calculated at once from the bond orders, pi,, which are 
known by inspection from the array of relevant resonance forms. As in all semi- 
empirical theories there is an adjustable parameter which, in this case, is c,. The 

I For a discussion of various kinds of bond order conventions and a comparison with Pauliag bond 
orders see N, S. Ham and K. Ruedenbetg, J. Chem. Phys. 29,121s (1958); D. W. J. Cruickshank 
and R A. Sparks, Proc. Roy. Sot. A, 250,270 (1960); D. W. J. Cruickshank, T~r&e&w~ 17, 155 
(1962). 

* In this paper RE values art calculated assuming that all n &c&on frameworks ace planar and un- 
strained. Exoeptions of this are, of course, well-known for certain systems (e.g. cyclo6ctatctraene, 
triphenylnxthyl) in configurations of lowest energy. 
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remarkable thing is that there is only one such parameter for hydrocarbon singlet 
ground states, and it can be assumed to be the same for all hydrocarbon molecules. 

The constant c, is seen, then, to play a role similar to that of the resonance integral 
p in MO theory, and it is useful to relate c, to /? for sake of comparison of results. 
This can be done by equating the resonance energy derived from Eq. (2) for some 
reference compound with that deduced by MO theory for the same compound. If 
we arbitrarily adopt benzene for the purposti we get, from Eq. (2), 

RE = ~(3 - [(BY + (W + (B)” + (tY + (4)’ + (+)‘I) 

The simple LCAO MO result for benzene is RE .= 2/l, from which we find c, = 4#?/3, 
when& 

RE = (4/3)BW- 1 puz). (3) 
bond8 

It should be noted that the use of Pauling bond orders in Eqs. (2) and (3) leads to a 
calculated resonance energy of zero for nonaromatic conjugated systems such as 
butadiene. This is a consequence of the Pauling bond order convention rather than a 
property of the underlying idea of the model. It is a consequence which is not 
seriously in disagreement with observations either of bond energy or bond length 
according to several recent interpretations .0p7 A discussion of the possible role of 
hybridization changes or compression energies will not be given here as the problems 
raised are no different for the present model than for conventional MO theory. 

APPLICATIONS TO SINGLET HYDROCARBON SYSTEMS 

The simplest application of the Pauling bond order model is the calculation of RE 
values of aromatic molecules for use in correlating heats of formation,(done in Ref. 1). 
The approach is also applicable to problems in chemical kinetics in calculating the loss 
of resonance energy suffered in the formation of transition states. Illustrations of this 

are given for the cases of electrophilic substitution and Diels-Alder reactions. 
Eiectrophilic substitution. Let us first consider as a simple (if impratical) sample 

calculation the comparison of meta and para substitution in styrene. Conventional 
structures for transition states are, for meta 

\I \; 
0 

\I -t- 

+ ‘-\ - -.f Q \ ‘-\ - 
0 
\ /-\ 

I 

and for para 

4 Results are not very sensitive to this choice A better over-all fit might result if we adopted a value 
q larger by 10 or 20%. 

6 The parameter q is positive, as is RE by our convention. The customary definition of the MO 
parameter #I makes it negative. For simplicity in presentation, however, we shall consider the 
symbol b to represent the (positive) absolute magnitude. 

a M. J. S. Dewar and H. N. Schmeising, T&&&on 5, 166 (1959); ibid. 11, 96 (MO). 
‘I L. S. Bartell, J. Chcm. Phys. 32, 827 (1960); Telruhedmn 17, 177 (1962). 
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The corresponding Pauling orders, pij, are illustrated in Fig. 1. Insertion of the 
pij into equation (3) gives RE (m&Z) = 1*185/9 and RE (para) = 1.5CQ9, from which 
it is inferred that the activation energy is 0*315@ lower for para than meta. If j? is 
given its customary thermochemical value of about 18 kcal, it is seen that the para 
directing tendency is quite appreciable, according to the model. Both pzra and meta 
attack entail a substantial loss in RE, for RE (benzene skeleton) = 28. 

I 
6 

META PARA 

FIG. 1. Pauling bond orders for metu and pcvo transition states in electrophilic 
substitution of styrene. 

A more practical application is to electrophilic substitution in polyacenes where 
computed differences in localiza@n energies can bc compared with those derived by 
Dewar’s MO approximation mqhod .s Results are plotted in Fig. 2 for attack at 
various sites of a number of hydrocarbons. The Pauling order curve represents the 

MO (DEWAR’S APPROXI I 

PALLING ORDER 

I m - I...? m m - k......r...d m rm 

FIG. 2. Calculated variation of activation energy in efectrophitic substitution for a 
series of aromatic hydrocarbons. For a given molecule the left-hand point cord+ 
spends to attack at the site identikd by the arrow. Successive points to t& right 
correspond to attack at the starred sites as ordered in clockwise sequence around the 

molecular diagrams. 

’ M. J. S. Dewar, J. Amr. Chrm. Sot. 74,3357 (1952). 
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quantity [RE (trans state)-RE (reactant)] in terms of 8. Both the MO and Pauling 
order values differ from activation energies by disposable constants. The significant 
comparison is of the relative stabilities of the various transition states. It can be seen 
that the agreement in ordering reactivities of sites is quite good. The principal 
difference is that the present model emphasizes differences between sites more than the 
MO approximation. Insufficient experimental data exist to indicate whichmethod gives 
the more reasonable results. 

Diels-Aider reaction. According to Brown: the activation energy for the reaction 
of a dienophile with a polynuclear aromatic hydrocarbon is related to the toss of 
energy involved when two of the 7r electrons from the aromatic molecule form para 
cr bonds. Figure 3 illustrates the case in which naphthalene is the diene. The Pauling 
orders shown in Fig. 3 imply, according to Eq (3), a substantial loss of resonance 
energy in the course of the reaction. 

FIG. 3. Pauling bond orders for Diels-Alder reaction illustrated with naphthakne as 
the diene. 

In Fig. 4 are shown, for a variety of polyacenes and sites of attack, the resonance 
energy losses calculated with the use of Eq. (3). These are compared with Brown’s 
simple LCAO MO calculation,@ with his MO calculations including overlap,B and 
with Wheland’s suggested empirical RE losses .I0 As before, the scale factor allowing 
a direct comparison of the Pauling order and MO results is set by equating the 
calculated RE values for benzene. The empirical values are compared assuming 
Wheland’s recommended RE value for benzene of 56 kcal/mole.10 

The qualitative agreement between the profiles of all of the cumes is reasonably 
good. It is apparent that the features of the simple MO curve oscillate more gently 
than those of the Pauling order curve. Inclusion of the overlap integral in the secular 
equations of the MO calculations has the interesting effect of enhancing the features 
and making them agree better with those of the empirical and Pauling order curves. 
Curiously, Dewar’s approximate MO method8 applied to the problem gives features 
of greater amplitude than exhibited by any of the curves plotted in Fig. 4. This is 
contrary to the case of electrophilic substitution where Dewar’s results were more 
washed out than those of the Pauling order model (Fig. 2). 

EXClTED STATES 

The results (ref. 1) and the preceding section indicate that there is a useful area 
of application of the Pauling order resonance scheme in ground state energy calcu- 
lations. Having established this, it is natural to investigate whether the scheme lends 
itself to calculations on excited electronic states, also. A virtue of the MO method is 
that it provides a straightforward basis for treating excited states as well as ground 
states. Expectations for easy success of the Pauling order model, on the other hand, 

’ R. D. Brown, J. Chcm. Sm. 691 (1950). 
la 0. W. Wheland. bumnce in Organic Chemisfry p. 379. John Wiley, New York (1955). 

IO 
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FIG. 4. Loss of resonance energy suffered in Diels-Al&r attack at various positions in 
a series of aromatic hydrocarbons. RE losses calculated by the present scheme are 
compared with MO calculations and with Wheland’s empirical values e&imatcd from 

calorimetric data (Ref. 10). 

could hardly be very great in view of the cumbersome and relatively unsatisfactory 
way the parent VI3 theory itself handles excited states. In the following, therefore, 
we shall content ourselves with estimations of the influence of resonance on excitation 
energies, and neglect the treatment of the excitation energy itself. 

Let us begin by considering the ground and first excited states of polyenes. Here- 
tofore we have completely ignored “ionic” valence-bond structures. We can now no 
longer neglect them, for excited states are liberally weighted with “ionic” resonance- 
forms.ll For ethylene, both the ground and first excited singlet states can be satis- 
factorily represented by appropriate linear combinations of the VB wave functions 
corresponding to 

+ - 
c=C, c-c, C-6 

I II, I1b 

11 To use an intuitive argument, this charge separation is revealed by the vigorously oscillating charge 
distribution during an ekctronic transition. The time-dependent wave function may be regarded 
as a linear combination of ground and excited y’s with timedependent co&cicnts. 
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Furthermore, we may have some confidence that the ground state is predominantly I, 
and the excited state is a superposition principally of II, and II,.‘* Similarly, for 
butadiene, the appropriate structures are 

III c== 

IV KLLL 

V a.b,c.d c=c-Lc, r-C-& 

c-k- L-LC=C 

%tJ icC4-5, ,-C== 

‘II,,, 
k-C_&, c-)‘r-k. 

Of these we consider III to represent the ground state and reject IV, as before, because 
of its formal bond. We consider the first excited state to be described by V-VII, 
but neglect VI and VII because of their more extensive charge separation. For 
uncertain reasons it is popular in written discussions of butadiene to invoke VI and 
neglect V. We do the opposite (1) because it is plausible,13 and (2) because the 
convention it sets for polyenes gives us the simplest systematic means possible for 
assessing the bond orders, JJ~,, needed to calculate effects of resonance. 

For higher polyenes we shall describe the ground state by structures analogous 
to I and III and excited states by ionic structures analogous to II and V. It may be 
Seen by inspection that this has the effect of making the bond orders alternate between 
1 and 0 in the ground state and between (Nb - l)/Nd and 0 in the excited state, where 
Nd is the number of double bonds in the ground state structure. Applying Eq. (1) 
and summing over bond energies, we find 

and 
E(ground) = (2N, - l)c,, + N&cl + N&s 

E(excited) = d + (2N, - l)c,, + (Nd - l)c, + N&N, - 1)/N,]’ 

in which d is a parameter to account for the energy of charge separation. This result 
implies that we can express all excitation energies, AE = hv, simply in terms of AE 
for a reference molecule. If we choose butadiene, for sake of argument, with 

A& = d - cl - 1.5~~ 

it is easily seen that AE for any polyene becomes 

(4 

AE = A&, - [(Nd - 2)/2N,]cz 

= A& - [(2N, - 4)/3NJ/?. (9 

1X The antisymmetriz& MO wave function for tk first excited singlet state reduces, indeed, to 
(MI, - YIIJ. 

I8 There is both experimental and theoretical evidence, however, that the 1 bond order of the central 
bond in tk excited state is appreciably greater than in the ground state. Tk rejection of IV, VI, 
and VII is obviously crude and somewhat arbitrary, but it is tk only simple scheme which circum- 
vents adding another adjustable parameter. 
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The second term on the right corresponds, then, to the red shift to be expected with 
increasing Nd. 

It is possible to determine empirically a value for @ which fits experimental data 
reasonably well. As might be expected, the value of p required is essentially the MO 
value to fit spectral data rather than the much lower MO value to fit calorimetric 
ground state RE data. It is more interesting, however, to see how well the model 
works if we dispose of /I altogether by giving AEB its MO value of 1.236 /I. When 
substituted into Eq. (5), this gives 

AEjAE, = 1 - 0.540 (Nd - 2)/N,. (6) 

A comparison of the red shift implied by equation (6) with red shifts observed,” 
and calculated by MO theoryls is shown in Fig. 5. Once again the crude Pauling 
order model is found to provide a significant degree of correlation. 

I 
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FIG. 5. Red shift in lowest Q --, v+ electronic excitation of poIyene3 as a function of 
length of conjugated chain. The ordinate represents the ratio of excitation energy to 

the reference excitation energy of butadiene. 

It would be of interest to apply an analogous model to polyacenes where the 
foregoing arbitrary procedure of ignoring the n character of nominally pure a bonds 
is obviated. Unfortunately, in contrast to the polyene case where only one excited 
state had to be considered, the situation with the aromatics is greatly complicated by 
the existence of numerous excited states of comparable energy.16 There is no difficulty 
in applying, mechanically, the Pauling order model to deduce a value for the red shift 

I4 K. S. Pitzr, Quanrum C&&try p. 272. Prentice-Hall, New York (1953). 
lb A. Streitwieser, Molecular Orbirai ?&wry for Organic Chemirts p. 207. John Wiley, New York 

(l%l). 
l‘ R. L. Hummel and Klaus Ruedenberg, J. Phys. Chem. 66.2334 (1962). 
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of, say, linear polyaccnes with increasing numbers of rings. The difficulty lies in 
determining which, if any, of the excited states the red shift should apply to. As a 
matter of fact, the red shift calculated by the present model is in appreciable dis- 
agreement with many of the individual transitions plotted for linear polyacenes by 
Hummel and Ruedenberg. I6 It is pleasing to note, however, that the calculated red 
shift agrees quite well with the average for all transitions to low lying excited singlet 
states. 

RADICALS 

Another problem treated qualitatively by the theory of resonance concerns the 
stability of resonance stabilized free radicals. It is immediately apparent that the 
Pauling order scheme, which takes into account only electron pair bonds, is completely 
incapable of copying with even the simplest resonance stabilized one-electron case, 
the ethylene cation 

L&+62 

which is analogous to the hydrogen molecule-ion. Both the VB and MO approaches, 

\ 
on the other hand, show that the 7r electron energy is lower than that in -Cm by p, 

/ 
the MO resonance integral. If radical stability is to be included in our simple scheme, 
it is necessary to graft on an extension. The simplest extension in keeping with the 
spirit of the Pauling order model is to consider the energy of interaction of an unpaired 
electron with an atom, i, to be smoothly related to the fraction, ui, of the resonance 
structures in which the electron is on i or 

Ei = w(c~' + Cl'tli + c%'u~%) (7) 

where w is a weighting factor independent of i. Rough considerations of the variation 
of bonding character as the total number of w electrons per carbon atom increases, 
suggest that w has the form 

where n, is the total number of w electrons and n is the number of carbons in the w 
electron framework. It is to be noted that w varies between 1 and l/2, and is always 
unity for a one-electron system. 

The conservation rule applying to the piI, also works for the u,, reducing the 
expression for the RE to a parameter c,’ which can be calibrated in terms of 8. Jf 
the ethylene cation is chosen for the calibration the expression for the resonance 
energy of unpaired electrons becomes 

RE (unp. el.) = ~(1 - &p)c2 

= B(1 + rs]z)(l - G4,g 
(8) 

It is fair to observe before going on that this device for accommodating radicals, 
while having a certain plausibility, is introduced more artificially than the original 
Eq. (1). The need for some explicit accounting of unpaired electrons is plainly 
evident, and the form chosen parallels the original equation. Nevertheless it is 



148 L. S. BARIZU 

T-1. RESONANCE STABIUWTION OF CERTAIN IUDICAIS AND RADICAL IONS 

(UNrnOFB) 

Radical 

& 

ti 

c=c-+ 

++H*C 

#*CH” 

#KC 

Double bond Unpaired 
co&b. cl. contrib. 
Eq. (3) Eq. (8) 

0 l-00 

0 1.00 

O-67 0.50 

0.03 O-72 

040 044 

0.61 O-89 

Total 

One electron 
in polycne 
frame? 
n=l 0 0 0 0 
PJ=2 0 140 l-00 l-00 
#I=4 0 l-50 150 l-62 
n=cO 0 24N 24ul 290 

l Refemce: separated C atoms. 

‘Reference: C=Cand& 
c Excess over betlpnc rings. A ekctron frameworks assumed coplanar even for 

&H and & whm coplanarity is sterically improbable. 
4 G. W. Wheland, J. Amer. Chem. Sot. 63.2025 (1941). 

0 2 4 6 0ne 
BUTAOIENE 

0 2 4 6 0 IO I2 I4 I6 “6 
CYCLOtiCTATETRAENE 

0 2 4 6 6fle 
CYCLOBUTADIENE 

BENZENE CYCLOOECAPENTAENE 
Fm. 6. Dependency of resonance energy (units of 8) on the number of = electrons 
occupying the conjugated network. Solid lines represent values calculated by the 
present scheme; dashed linur represent MO values. References adopted for com- 
puting resonance energies of the n-carbon networks are n/2 ethylene sigma skeletons. 

aesthetically offensive that a new parameter c, ’ had to be invoked and calibrated in 
our resonance theory scheme whereas the MO theory handles radicals as readily as 
it handles systems of paired electrons. 

In Table 1 and in Fig. 6 the results of the present scheme are compared with those 
of simple MO theory. It may be observed that the dependency on chain length and 
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on the number of electrons occupying the x electron framework is fairly good, One 
result deserves comment. The Pauling order contribution, Eq. (3), for the benzyl 
radical or, similarly, the benzyl cation or anion, is only 0438 greater than that in 
benzene itself. This is unexpectedly low in view of the fact that the henzyl system has 
five resonance forms as compared with only two for benzene itself. It was noted and 
explained in reference 1 that the Pauling order RE usually correlates very strongly 
with the number of resonance forms, as expected from the theory of resonance. 
The benzyl system shows that the RE of the present model, however, depends on the 
details of the electronic structure (rightly or wrongly) and is not equivalent to a simple 
counting of resonance forms. 

IONIZATION POTENTIALS 

The resonance stabilization of a 7r electron system tends to increase as the TV 
electron network increases in size. According to the present model the RE of singly 
charged cations tends to increase more rapidly with network size than the RE of 
neutral molecules. Since large cations are preferentially stabilized it should require 
less energy to ionize a large aromatic molecule than a small one. If we assume that 
the energy to ionize is the same for all aromatics except for resonance effects, we 
predict, using benzene (9) for a reference, that 

I = 14 - (1, - I) 

- I, - ([REQI, = n - 1) - RE(n, = n)] 

- [RE& = 5) - RE(n, = 6)16} 

= I+ - AARE (9) 
where 1 represents the ionization potential and RE values are calculated with the use 
of Eqs. (3) and (8). The above assumption is exactly analogous to the one made 
earlier for electronic spectra. Further, it is precisely equivalent to the assumption 
made in simple MO treatments of ionization potentials.” 

The results of this simple treatment for various compounds are compared in Fig. 7 
with experimental ionization potentials18 and with MO calculations.17 It is found in 
aromatic systems that the influence on AARE of the unpaired electron (Eq. 8) in 
cations is minor in comparison with the effect of double bond resonance (Eq. 3). 
The experimental values in Fig. 7 are themselves subject to appreciable uncertainty. 
Nevertheless, it can be seen in the limited number of cases studied that (a) both the 
present and the MO methods are more or less in accord with experiment for aromatic 
molecules, and (b) the empirical values of /? implied for the present and MO methods 
are roughly the same. Also plotted, in addition to the aromatic molecules, is ethylene. 
The present model evidently works reasonably well for ethylene even though the MO 
approach fails. Not plotted is butadiene for which both calculational schemes fail, 
the present method failing more dismally than the MO method. 

For molecules of the type treated above it is easy to show that both calculational 
methods predict that MRE values are the same for the formation of anions as for 
the formation of cations. No gaseous electron affinity results are available but 
experimental polarographic reduction potentials afford a similar comparison, as 

l7 A. Streitwicscr, Molecular Orbitat ?kory for Oqanic Ckmists p. 188. John Wiley, New York 
(1961). 

*’ M. E. Wacks and V. H. Dibclcr, J. Ckm. Phys. 31,1557 (1959); K. Watanabe, Ibid. 26,542 (1957). 
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FIG. 7. Experimental ionization potentials compared with calculated values of AA RE. 

discussed by Streitwieser. I7 Results resemble those of Fig. 7 with the exception that 
a smaller empirical value of /9 is required to fit the data, owing to solvation and other 
effects. 

NON-HYDROCARBON SYSTEMS 

It is characteristic of any semiempirical method such as conventional VB theory or 
MO theory that at least one new parameter must be invoked for each different kind of 
atom considered. Since the reader may feelthatenoughparametershavebeenunkashed 
in this paper already, no attempt will be made to extend the scheme quantitatively 
to embrace heteroatoms. There is no obvious reason why such an extension could 
not be made, however, in view of the qualitative success of resonance theory with 
general systems, and it is certainly true that an extension is needed if the scheme is to 
be of general utility to organic chemists. 

We shall comment on only two non-hydrocarbon applications, each of them related 
to effects of resonance on acid strength. As noted by Pauling,lB the strengths of oxygen 
acids, XOJOH),, which dissociate to form the resonance stabilized anions 

[XO,~,(OW,,l-’ 
depend orderly on the number of equivalent oxygens, n + 1 in number, of the anion. 
If it is assumed that individual resonance structures have Pauling bond orders, 
pxa, of unity for n of these oxygens and zero for the oxygen bearing the formal charge 
of - 1, Eq. (3) is easily seen to give 

RE = 4(n/n i- 1)/I/3 (10) 
or 

RE(n) - RE(n - 1) = 4/3/[3(na + n)] (11) 

I’ L. Fading, Nature of the Chemical Bond p. 325. Cornell University Press, Ithaca, New York 
(1960); General Chemistry, W. H. Freeman, San Fransisco (1947). 
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This implies a greater anion stability as n increases and, hence, a greater acidity. 
Pauling observes that AC?‘@) - AcO(n - 1) for the dissociation is of the magnitude 
of 7 kcaljmole, which is very roughly in agreement with Eq. (11) if b is given its usual 
hydrocarbon thermochemical value of about 18 kcal/mole. 

The other illustration concerns the phenoxide ion with structures 

A B C D E 

These are exactly analogous to the benzyl structures mentioned earlier, except that we 
would expect the quinoid structures C-E to be relatively less stable than the structures 
A and B by virtue of the electronegativity difference between carbon and oxygen. 
It will be recalled that the RE excess (over benzene) for the benzyl anion is only 
0.03fi if all structures are given equal weight in Eq. (3). If, however, we arbitrarily 
give structures GE only l/3 the weight of A and B, it is interesting to note that the 
RE excess increases to 0.2OSg .= Such an increase would materially enhance the 
calculated acidity of phenol. 

DISCUSSION 

All in all it is quite remarkable how faithfully such a simple extension of qualitative 
resonance theory tends to follow the results of more elaborate theoretical approaches 
in a wide variety of applications. This fact should not be allowed to obscure certain 
imperfections. 

First, there is nothing in the present scheme to suggest the Hiickel 4n + 2 rule 
for aromaticity. In this respect the resonance model resembles the simple VB approach 
which suffers the same deficiency. In fairness, however, it must be admitted that the 
actual resonance energies of the simple MO method are scarcely more suggestive of 
the 4n + 2 rule than the resonance energies of our present scheme, as Fig. 6 
reveals. It is the auxiliary idea of filled orbitals implicit in the MO method which 
leads to the HUckel rule?’ 

Also, as mentioned earlier, the treatment of ground singlet states, excited states, 
and radicals requires the calibration of three parameters in the resonance scheme, 
namely c, (Eq. 2), d-c, (Eq. 4), and c,’ (Eq. 8). The MO theory accomplishes the same 
job with but one parameter, 8. 

As noted by Ham and Ruedenberg? Pauling bond orders are regularly related to 
other kinds of bond orders in alternate hydrocarbons but the regularity is partly 
lost with nonalternates. One manifestation of this appears in the case of the non- 
alternate, azulene. The resonance energy calculated by the MO method for azulene 
is less than that calculated for its alternate isomer, naphthalene, by about 9 %. Eq. (3), 
however, gives a resonance energy for azulene which is greater than that of naphthalene 

m Assuming the ECO of Equation (I) is the same as that of Etc. for sake of argument. 
** Cyclobutadiene is the one case shown in Fig. 6 where the vanishing MO msonance energy at n, = n 

supports the Hirckel rule. Even this is illusory as discussed by many authors. Craig [Pmt. Roy. 
Sm. A200,272, 340 (195011 for example, has shown that inclusion of configuration interaction in 
the MO calculation leads to a stabilization of cyclobutadiene even greater than that given by the 
simple VB treatment, and further, implies a singlet ground state in contrast with the triplet expected 
from simple Hiickel theory. 
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by about 2%. Such minor discrepancies in RE values are often not considered as 
serious but they may be indicative of imperfect handling of nonalternates by the 
present method. 

Another point which should not be overlooked is that the extreme simplicity of 
the present method begins to vanish as the complexity of the molecule increases, 
because of the tedium involved in writing all of the appropriate resonance forms. 
For example, ovalene (C&H,) in its ground state has 50 Kekulbtype resonance forms. 
The treatment of excited states or transition states in electrophihc substitution would 
require many-fold more. On the other hand, there is no great art in writing resonance 
forms, and if a small fraction are inadvertently missed it makes little difference in the 
pu and the calculated RE values. 

One of the least satisfactory aspects of the Pauling order model is the lack of a 
bonafide derivation of it from quantum mechanical principles in terms of an explicit 
set of assumptions. To be sure, it may be argued that the assumptions in simple MO 
or VB theory are so severe that their justification is not fundamentally much greater. 
Nevertheless, it would be desirable to have a formal bridge in addition to the empirical 
bridges connecting the methods. 

It would seem most natural to relate the Pauling order model to valence bond 
theory since the resonance forms used represent VB wave functions. Even if it is 
assumed that our basic relation, equation (l), can be rationalized in terms of VB 
theory, it is difficult to justify the equal weighting of resonance forms implicit in the 
Pauling bond orders and the total neglect of structures with formal bonds. In 
anthracene, for example, VB calculationsBe not only give the structure 

a substantially lower weight than that of 

but give it a lower weight, even, than that of 

which is ignored altogether in determining Pauling bond orders. The problem of 
weighting is important because the RE of Eq. (3) is sensitive to it. It is not impossible 
that the very neglect of the non-KekulC types of structures in determining Pauling 
bond orders has the effect of compensating for the weights, but this vague possibility 
can hardly be used to justify the present scheme. 

We turn, then, to the simple MO method. The surprising finding by Ham and 
Ruedenberg* that Pauling bond orders can be derived directly from MO theory 
provides a clue of a possible link between the present mode1 and the MO method. 
This clue has not yet been explored in detail, but it promises to offer the best justifi- 
cation of the otherwise flagrantly arbitrary weighting procedure used in defining 
Pauling bond orders. 

*I M. B. Oakley and G. E. Kimball, J. Clrem. Phys. 17,706 (1949). 
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Finally, the unanswered questions of formal legitimacy notwithstanding, the fact 
remains that the present scheme correlates a wide variety of observables suazssfully. 
Somehow, it captures so large an element of truth so simply that it merits wider study, 
and it seems fitting to present it for general scrutiny at this time. 

SUMMARY OF PROCEDURE FOR STABLEST STATES 
OF LOWEST MULTIPLICiTY 

The scheme outlined here applies to a planar = electron hydrocarbon system with 
n,~ electrons moving in a single conjugated network of n carbon atoms. Given such 
a system, all ~omina~y equivalent ICekuWtype resonance forms are drawn. If n is 
even there will be N,, = nJ2 double bonds. If n is odd there will be Nd = (n. - 1)/Z 
double bonds and one unpaired electron. The Pauling order, pi,, of bond q is defined 
as the number of times bond y appears as a double bond in the resonance forms 
divided by the total number of the forms. The quantity Ui of atom i is the number of 
forms in which the unpaired electron is on atom i divided by the total number of forms. 

The resonance energy RE can be calculated, then, from 

where n, is the number of atoms on which the unpaired electron is assumed to move 
in the refirence structure. For example, in calculating RE values for the cyclic systems 
in Fig. 6, RE is considered to be the energy difference between n, electrons in n/2 
ethylene sigma skeletons and the same number of electrons in the n-membered carbon 
rings. It is readily seen that Fiq. (7) requires nr to be 2. On the other hand, it is 
conventional in the case of a radical like the benzyl radical to look at the excess 
stability compared with the benzene molecule and an isolated -CH,- radical. In this 
example n, must be taken as 1, and the benzene RE must be subtracted from the RE 
of Eq. (12) to give the excess RE. 

Ifhstrative culcuhtion. Given the benzene network with five n‘ electrons 

(Q+++ etc.): 

The two double bonds are shared equally, so thatp,$ = 216 for all bonds & The un- 
paired electron is also shared equally, making ail ui = l/6. If our RE reference is 
three ethylene sigma skeletons, Eq. (12) with N, = 2, n = 6, n, = 5, n, = 2, gives 

RE = (4~~3)(2 - 6[2/6B + B(1 + ~1~5~~x1~2 - 611fW) 

= (l-7778 + O-3467)/3 

= 2.124/K 

Ac&nowlcr;(pPmmr-I wish to thank Mr. N. Magnani and Miss K. Wirth for tkir assistance with 
calculations. 


